A robust, colocated, implicit algorithm for direct numerical simulation of compressible, turbulent flows

نویسندگان

  • Yucheng Hou
  • Krishnan Mahesh
چکیده

A non-dissipative, robust, implicit algorithm is proposed for direct numerical and large-eddy simulation of compressible turbulent flows. The algorithm addresses the problems caused by low Mach numbers and under-resolved high Reynolds numbers. It colocates variables in space to allow easy extension to unstructured grids, and discretely conserves mass, momentum and total energy. The Navier–Stokes equations are non-dimensionalized using an incompressible scaling for pressure, and the energy equation is used to obtain an expression for the velocity divergence. A pressure-correction approach is used to solve the resulting equations, such that the discrete divergence is constrained by the energy equation. As a result, the discrete equations analytically reduce to the incompressible equations at very low Mach number, i.e., the algorithm overcomes the acoustic time-scale limit without preconditioning or solution of an implicit system of equations. The algorithm discretely conserves kinetic energy in the incompressible inviscid limit, and is robust for inviscid compressible turbulence on the convective time-scale. These properties make it well-suited for DNS/LES of compressible turbulent flows. Results are shown for acoustic propagation, the incompressible Taylor problem, periodic shock tube problem, and isotropic turbulence. 2004 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of turbulent compressible flows in a C-D nozzle with different divergence angles

Compressible gas flow inside a convergent-divergent nozzle and its exhaust plume atdifferent nozzle pressure ratios (NPR) have been numerically studied with severalturbulence models. The numerical results reveal that, the SST k–ω model give the bestresults compared with other models in time and accuracy. The effect of changes in value ofdivergence half-angle (ε ) on the nozzle performance, thru...

متن کامل

A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence

A new second-order accurate implicit temporal numerical scheme for the direct numerical simulation of turbulent flows is presented. The formulation of the implicit method and the corresponding tunable parameters are introduced. The numerical simulation results are compared with the results given by explicit Runge–Kutta schemes, theoretical results, and published experimental and numerical data....

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

Direct numerical simulation of turbulent, chemically reacting flows A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jeffrey Joseph Doom IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto–ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005